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Background: Altered patterns of gene expression mediate the effects of particulate matter (PM) 
on human health, but mechanisms through which PM modifies gene expression are largely 
 undetermined.

oBjectives: We aimed at identifying short- and long-term effects of PM exposure on DNA methyl-
at ion, a major genomic mechanism of gene expression control, in workers in an electric furnace steel 
plant with well-characterized exposure to PM with aerodynamic diameters < 10 µm (PM10).

Methods: We measured global genomic DNA methylation content estimated in Alu and long 
interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of 
iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by 
PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through 
bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work 
week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 
exposure was between 73.4 and 1,220 µg/m3.

results: Global methylation content estimated in Alu and LINE-1 repeated elements did not show 
changes in postexposure measures compared with baseline. PM10 exposure levels were negatively 
associated with methylation in both Alu [β = –0.19 %5-methylcytosine (%5mC); p = 0.04] and 
LINE-1 [β = –0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter 
DNA methylation was significantly lower in postexposure blood samples compared with baseline 
(difference = –0.61 %5mC; p = 0.02). 

conclusions: We observed changes in global and gene specific methylation that should be further 
characterized in future investigations on the effects of PM.
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Foundry work has been associated in several 
early investigations with adverse health out-
comes, including cardiovascular and respira-
tory disease as well as increased risk of lung 
cancer [Andjelkovich et al. 1990; International 
Agency for research on Cancer (IARC) 1987; 
Kuo et al. 1999; Xu et al. 1996]. Exposures 
responsible for the excess in risk have not been 
clearly identified (IARC 1987). In modern 
foundry facilities, exposures to chemicals are 
remarkably lower than in the past (Bergamaschi 
et al. 2005), but particulate matter (PM) levels 
are still well above the concentrations found 
in ambient outdoor air. Ambient PM has also 
been associated with increased hospitalization 
and mortality due to cardiorespiratory disease 
and lung cancer (Brook et al. 2004; Peters 
2005; Samet et al. 2000; Vineis and Husgafvel-
Pursiainen 2005). Epidemiologic (Brook et al. 
2004; Peters 2005; Schulz et al. 2005) and 
in vivo studies (Chang et al. 2005; Chen and 
Hwang 2005; Corey et al. 2006) suggest that 
the transition metal components of PM may 
be responsible for such effects.

The mechanisms linking PM inhalation 
to adverse health outcomes have not been 

completely clarified. Inhaled particulate pol-
lutants have been shown to produce sys-
temic changes in gene expression, which can 
be detected in peripheral blood of exposed 
individuals (Wang et al. 2005). Gene expres-
sion of human genes is controlled by DNA 
methylation, which, in mammals, involves 
the postreplication addition of methyl groups 

to the 5´ position of cytosine ring within 
the context of CpG dinucleotides to form 
5-methylcytosine (5mC). Initial observations 
of in vitro and animal models have shown that 
air particles, or air particle components such 
as toxic metals, can induce changes in DNA 
methylation (Belinsky et al. 2002; Takiguchi 
et  al. 2003). Whether DNA methylation 
changes occur in human subjects exposed to 
PM has never been determined.

Reduced genomic methylation content 
in blood DNA has been observed in sub-
jects with cardiovascular disease, as well as in 
cancer subjects (Robertson 2005). Genomic 
DNA hypomethylation is likely to result from 
demethylation in transposable repetitive ele-
ments, which plays a crucial role in gene regu-
lation and genomic stability. More than 90% 

of all genomic 5-methylcytosines lies within 
CpG islands located in transposable repetitive 
elements, including Alu and long interspersed 
nuclear element-1 (LINE-1) sequences, which 
are those most common and well charac-
terized. Measurements of Alu and LINE-1 
methylation have been used to estimate global 
genomic DNA methylation content (Yang 
et al. 2004). In vitro studies have shown that 
reactive oxygen species (ROS), which are con-
sidered one of the main cellular stressors gen-
erated by PM exposure (Borm et al. 2007), 
may produce genomic hypomethylation 
(Valinluck et al. 2004). Conditions associated 
with reduced global DNA methylation con-
tent, such as specific dietary and genetic varia-
tions (Friso and Choi 2002; Friso et al. 2002), 
have been shown to interact with ambient PM 
exposure to produce health-related outcomes 
(Baccarelli et al. 2008).

Elevated expression of the induc-
ible nitric oxide synthase gene (iNOS, also 
known as NOS2, Genbank accession num-
ber AF017634) has been observed in animal 
experiments of exposure to PM or PM com-
ponents in the lung and across other different 
tissues (Folkmann et al. 2007; Thomson et al. 
2007; Ulrich et al. 2002), including blood 
leukocytes (Blackford et al. 1994). Specific 
studies on iNOS have shown that lower 
DNA methylation in the gene promoter is 
associated with increased expression (Chan 
et al. 2005). iNOS expression and activity 
are increased in the presence of ROS (Zhen 
et al. 2008) and other factors, such as ciga-
rette smoke (Anazawa et al. 2004; Chyu et al. 
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1999; Wright et al. 1999), associated with 
cardiorespiratory outcomes. 

In the present work, we investigated 
short- and long-term effects of particle expo-
sure on DNA methylation in peripheral blood 
DNA from workers with well-characterized 
exposure to a wide range of PM levels in an 
electric steel furnace plant. We measured 
global genomic DNA methylation content, 
estimated in Alu and LINE-1 repetitive ele-
ments, and promoter methylation of iNOS. 

Material and Methods
Study subjects. We recruited 63 healthy, male 
workers (mean age 44 years; range between 
27 and 55 years) free of cardiovascular and 
pulmonary disease in a steel production plant 
in Brescia, Northern Italy. All participants 
had been working in the present job position 
for at least 1 year. Thirty-seven subjects had a 
rotating weekly schedule based on four con-
secutive working days of 8 hr each, followed 
by 2 days of rest. The remaining 26 subjects 
worked Monday through Friday, also in 8-hr 
shifts. Twenty-five subjects (40%) were cur-
rent smokers, who reported a mean (±SD)
number of 13.0 ± 7.2 cigarettes smoked every 
day. The average body mass index of the study 
participants was 26.5 ± 2.7 kg/m2.

A self-administered questionnaire was 
used to collect detailed information on life-
style, drug use, recent medical conditions, 
and residential history. Records from the fac-
tory administrative and clinical files were used 
to abstract information on occupational and 
past medical history.

In order to discriminate short- and long-
term effects of PM, we obtained blood sam-
ples for DNA methylation analysis at two 
different times. Sample 1 was collected in 
the morning of the first day of work (after 2 
days off work) before the beginning of any 
work activity. Sample 2 was collected at the 
same hour on the fourth day of work, after 3 
consecutive days of work. Individual written 
informed consent and approval from the local 
Institutional Review Board were obtained 
before the study.

Exposure assessment. Measures of PM 
with aerodynamic diameters < 10 µm (PM10)
obtained in each of the 11 work areas of the 
steel production plant were used to estimate 
individual exposures. PM10 was measured 
during the days between sample 1 and sample 

2 collection using a GRIMM 1100 light-scat-
tering dust analyzer (Grimm Technologies, 
Inc. Douglasville, GA, USA).

During the 3 working days between blood 
samples 1 and 2, each of the study subjects 
recorded in a personal log the time he spent 
in each of the work areas. Individual expo-
sure was calculated as the average of PM10 
weighted by the time spent in each area. 
PM10 levels in each of the work areas have 
shown very little variability over time, as 
measures repeated over 1 year showed very 
high correlation between PM10 concentra-
tions (r2 > 0.90). Because all the study sub-
jects reported in the questionnaire to have 
performed their standard work routine during 
the 3 days of the study, the time-weighted 
PM10 represented, in addition to the expo-
sure during the week of the study, a measure 
of the usual exposure of the study subjects. 
Therefore, we considered our study subjects to 
be usually exposed to the levels of PM10 mea-
sured during the week of the examination. In 
the statistical analysis, as specified below, we 
evaluated the association of PM10 levels with 
a) DNA methylation measured at the end of 
the work week (sample 1), which, together 
with short-term changes between sample 1 
and sample 2, were taken as measures of short 
term effects; b) DNA methylation measured 
at the beginning (sample 1) and at the end of 
the work week (sample 2), which were ana-
lyzed jointly in repeated measure analysis and 
taken as a measure of long-term effects.

DNA methylation analysis. We used 
EDTA tubes to collect 7 mL whole blood that 
was promptly centrifuged on site at 2,500 rpm 
for 15 min. The buffy coat (400 µL) was 
transferred in a cryovial, immediately fro-
zen in vapor phase of liquid nitrogen, and 
shipped in nitrogen dry shippers to the labo-
ratory. DNA was extracted using the Wizard 
Genomic DNA purification kit (Promega, 
Madison, WI, USA) following the manufac-
turer’s instructions.

We performed DNA methylation analyses 
on bisulfite-treated DNA using highly quan-
titative analysis based on PCR pyrosequenc-
ing; 1 µg DNA (concentration 50 ng/µL) 
was treated using the EZ DNA Methylation-
Gold Kit (Zymo Research, Orange, CA, 
USA) according to the manufacturer’s proto-
col. Final elution was performed with 30 µL 
M-Elution Buffer. 

To estimate global DNA methylation con-
ent, we performed DNA methylation analyses 
f Alu and LINE-1 repeated sequences, which 
llow for the amplification of a representa-
ive pool of repetitive elements, as previously 
escribed (Bollati et al. 2007). Measures of Alu 
nd LINE-1 methylation have been shown to 
e highly correlated with 5-methylcytosine 
ontent measured through high performance 
iquid chromatography and are commonly 
sed as a surrogate of global methylation 
Weisenberger et al. 2005; Yang et al. 2004).

We developed the assay for iNOS methy-
ation by locating the iNOS promoter using 
he Genomatix Software (Genomatix Software 
nc, Ann Arbor, MI, USA) on chromosome 
7 (start = 23149861, end = 23150461), and 
mplified the sequence between 23149872 
nd 23149990. A 50-µL PCR was car-
ied out in 25 µL GoTaq Green Master mix 
Promega), 10 pmol forward primer, 10 pmol 
everse primer, 50 ng bisulfite-treated genomic 
NA, and water. PCR cycling conditions were 

5°C for 30 sec, 50°C for 30 sec, and 72°C 
or 30 sec for 40 cycles. PCR products were 
urified and sequenced by pyrosequencing as 
reviously described (Bollati et al. 2007) using 
.3 µM sequencing primer.

Primers for Alu, LINE-1, and iNOS assay 
re shown in Table 1. For all assays we used 
uilt-in controls to verify bisulfite conver-
ion efficiency. Compared with other com-
on methods of DNA methylation analysis, 

yrosequencing-based assays have the advan-
age of producing individual measures of 
ethylation at more than one CpG dinucle-

tide, thus reflecting more accurately DNA 
ethylation in the region. In the Alu or 

INE-1 assays, we measured the percentage 
f 5mC (%5mC) at each of three CpG dinu-
leotide positions that are repeated over the 
uman genome with the sequence of interest.

In the iNOS promoter assay, we meas-
red %5mC at each of two individual CpG 
i nucleo tides within a CpG island located in 
he gene promoter.

The within-sample coefficients of varia-
ion were 0.7% for LINE-1, 1.6% for Alu, 
nd 0.7% for iNOS. The between-sample 
oefficients of variation in this study popu-
ation were 1.7% for LINE-1, 3.3% for Alu, 
nd 5.3% for iNOS. Every sample was tested 
wo times for each assay to confirm reproduc-
bility. The resulting data were analyzed using 
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Table 1. Primers for DNA methylation analysis.

Sequence ID Forward primer (5´ to 3´) Reverse primer (5´ to 3´) Sequencing primer (5´ to 3´) Sequence analyzeda

Global methylation analysis
 Alu Biotin-TTTTTATTAAAAATATAAAAATT CCCAAACTAAAATACAATAA AATAACTAAAATTACAAAC G/AC/TG/AC/TG/ACCACCA
 LINE-1 TTTTGAGTTAGGTGTGGGATATA Biotin-AAAATCAAAAAATTCCCTTTC AGTTAGGTGTGGGATATAGT TTC/TGTGGTGC/TGTC/TG
Gene-specific methylation analysis
 iNOS AATGAGAGTTGTTGGGAAGTGTTT Biotin-CCACCAAACCCAACCAAACT TAAAGGTATTTTTGTTTTAA C/TGATTTTC/TGGGTTTTTT
    TTTATTTTG
aNucleotides at which DNA methylation was measured are underlined.
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mixed models, as described in the statistical 
analysis section below.

Statistical analysis. In each blood sample, 
the pyrosequencing-based analysis of DNA 
methylation produced six values each for Alu 
or LINE-1 (methylation at three CpG dinu-
cleotide positions replicated in two measure-
ments) and four values for iNOS (methylation 
at two individual CpG dinucleotide positions 
replicated in two measurements). Each sub-
ject was tested twice [at the beginning of the 
work week (sample 1) and after 3 days of 
work (sample 2)]. To account for the data 
structure, we used mixed effects models, as 
described below.

Analysis of short-term effects of PM expo-
sure on DNA methylation. We first evaluated 
differences between sample 1 and sample 2 in 
two-way crossed random effects models:

yi(j ,j ) = β0 + β1(sample) + δj + δj + ei j j  [1]
1 2 1 2 ( 1, 2),

where β0 is the overall intercept; β1 is 
the regression coefficient for the difference 
between Samples 1 and 2; j1 represents the 
subject; j2 represents the CpG dinucleotides 
position; δj is the random effect for subject j1; 
δ 1

j  is the random effect for CpG dinucleotides 
position; 2 and ei(j ,j ) is the residual error term. 
Likelihood ratio 1tests 2 were used to test for the 
significance of β1. 

We then evaluated whether DNA methyla-
tion measured after 3 days of work (Sample 2) 
was associated with the PM10 exposure level 

	

estimated during the previous 3 days, using 
two-way crossed random effects models:

	 yi(j1,j2) = β0 + β1(PM10) + β2X2  
		  +...+ βnXn + δj1 

+ δj2 
+ ei(j1,j2),	 [2]

where β0 is the overall intercept; β1 is the 
regression coefficient for PM10 exposure; 
β2… βn are the regression coefficients for the 
covariates included in multivariate models; j1 
represents the subject; j2 represents the CpG 
dinucleotides position; δj1

is the random effect 
for subject j1; δj2

 is the random effect for 
CpG dinucleotides position, and ei(j1,j2) is the 
residual error term. Covariates for multivari-
ate models included the following potential 
confounders that were chosen a priori and 
included in the analysis: age, body mass index, 
smoking, and number of cigarettes/day. These 
variables were not significantly associated in 
univariate analysis with methylation of Alu (β 
= 0.00, SE = 0.01, p = 0.99 for age; β = 0.01, 
SE = 0.03, p = 0.83 for BMI; β = 0.11, SE = 
0.15, p = 0.46 for smoking; β = –0.01, SE = 
0.01, p = 0.73 for cigarettes/day); LINE-1 (β 
= 0.00, SE = 0.02, p = 0.94 for age; β = –0.06, 
SE = 0.05, p = 0.19 for BMI; β = –0.15, SE = 
0.27, p = 0.57 for smoking; β = –0.02, SE 
= 0.03, p = 0.41 for cigarettes/day) or iNOS 
(β = –0.03, SE = 0.06, p = 0.57 for age; β = 

–0.19, SE = 0.16, p = 0.23 for BMI; β = 0.47, 
SE = 0.89, p = 0.59 for smoking; β = –0.02, 
SE = 0.09, p = 0.82 for cigarettes/day).

Analysis of long-term effects of PM expo-
sure on DNA methylation. As noted in the 
exposure assessment section, PM10 exposure 
levels estimated during the study also repre-
sented a measure of the usual exposure of the 
study subjects. To estimate long-term effects 
of PM10 on DNA methylation, we evaluated 
the level of individual exposure to PM10 in 
relation to all the measures of DNA methy-
lation performed in the study, regardless of 
whether they were measured on samples taken 
on the first day of work (sample 1), or after 3 
consecutive days of exposure to PM10 (sample 
2), thus assuming that PM10 effects operating 
over an extended time frame produced similar 
modifications at the two time points. 

For DNA methylation measures that did 
not show changes in the analysis of short-
term effects, we fit two-way error-components 
models, as described in the formula [2] above. 
If a significant difference between samples 1 
and 2 was found in the analysis of short-term 
effects, we fit a three-way error-components 
model, as described in the following notation:

	 yi(j1,j2,j3) = β0 + β1(PM10) + β2X2 +...+ βnXn  
		  + δj1 

+ δj2 
+ δj3 

+ ei(j1,j2,j3)	 [3]

where β0 is the overall intercept; β1 represents 
the mean PM10 effect; β2… βn are the regres-
sion coefficients for the covariates included in 
multivariate models; j1 represents the subject; 
j2 represents the CpG dinucleotide; and j3 
represents the blood sample (sample 1 or 2); 
δj1

is the random effect for subject j1; δj2 is the 
random effect for the CpG dinucleotide posi-
tion j2; and δj3 is the random effect for blood 
sample j3; ei(j1,j2 ,j3) is the residual error term.

Covariates for multivariate models included 
e same variables as in the analysis of short-
rm effects (age, body mass index, smoking, 
d number of cigarettes/day).

esults
istribution of DNA methylation data. DNA 
ethylation showed changes among different 

lood DNA samples that were relatively small 
mpared with the mean methylation. DNA 
ethylation in Alu repeated elements ranged 

etween 24.3 and 28.9 %5mC, with a mean of 
5.8 %5mC (SD = 0.83). DNA methylation 
 LINE-1 repeated elements ranged between 

5.9 and 86.1 %5mC, with a mean of 78.8 
5mC (SD = 1.22). DNA methylation in 
OS ranged between 56.2 and 75.6 %5mC, 

ith a mean of 67.8 %5mC (SD = 3.52). 
Short-term effects of PM10 exposure on DNA 

ethylation. Individual PM10 average levels 
timated for each subject during the 3 work 
ays between the first and the second DNA 
ethylation measurement (sample 1 and sample 

) ranged between 73.4 and 1220.2 (µg/m3) 
verage 233.4 µg/m3). As shown in Table 2, 
NA methylation of Alu and LINE-1 repeated 
ements did not show any change after 3 days 
f work (sample 2) compared with the baseline 
easurements taken at the beginning of the first 

ay of work (sample 1) (mean difference = 0.00 
5mC, SE = 0.08, p = 0.99 for Alu; mean dif-
rence = 0.02 %5mC, SE = 0.11, p = 0.89 for 
INE-1). DNA methylation in the iNOS pro-
oter was significantly decreased after 3 days of 
ork compared with the baseline measurement 
ean difference = –0.61 %5mC; SE = 0.26, p 

 0.02) (Table 2). The average level of individual 
posure to PM10 during the 3 days of work 
owed negative correlations with DNA meth-
ation of Alu, LINE-1, and iNOS measured  
 sample 2 (Table 3), with associations that 
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Table 2. Change in methylation of Alu, LINE-1, and iNOS, after 3 days of work (sample 2) compared with 
measures on the first day of work (sample 1).

 Difference in DNA methylation
 No. Mean DNA methylation  (Sample 2 – Sample 1)
 of subjects Sample 1 Sample 2 Mean SE p-Value

Global methylation analysis
 Alu (%5mC) 61 25.8 (0.7) 25.8 (0.6) 0.00 0.08 0.99
 LINE-1 (%5mC) 61 78.8 (1.0) 78.8 (1.5) 0.02 0.11 0.89
Gene-specific methylation analysis 
 iNOS (%5mC) 60 68.8 (3.5) 68.2 (3.7) –0.61 0.26 0.02

Table 3. 10    
3 consecutive work days of exposure.

 Unadjusted regression Adjusted regressiona

	 βb SE  p-Value βb SE p-Value

Global methylation analysis
 Alu –0.18 0.10 0.08 –0.18 0.10 0.071
 LINE-1 –0.25 0.25 0.31 –0.28 0.25 0.26
Gene-specific methylation analysis
 iNOS –0.27 0.63 0.66 –0.39 0.62 0.53
aMultivariable regression models adjusted for age, body mass index, smoking, number of cigarettes/day. bβ for an incre-
ment equal to the difference between the 90th and 10th percentile of PM10.

Association of PM  average exposure with methylation of Alu, LINE-1, and iNOS measured after 
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were not statistically significant in unadjusted 
analysis, as well as in models adjusted for age,
body mass index, smoking, and number of
cigarettes/day.

Long-term effects of PM10 exposure on
DNA methylation. To identify possible long-
term effects of PM10 exposure, we evaluated
the level of individual exposure to PM10,
taken as a measure of usual exposure to par-
ticles, in relation to all the measures of DNA
methylation performed in the study, regard-
less of whether they were measured on sam-
ples taken on the first day of work (i.e., after
2 days off, sample 1), or after 3 consecutive
days of work (sample 2) (Table 4). In the
models, the two samples collected at different
times are exchangeable, thus assuming that
PM10 effects operating over an extended time
frame produced similar modifications at the
two time points.

In unadjusted models, the average PM10
levels were significantly associated wit
decreased Alu methylation (β = –0.18, SE =
0.09; p = 0.04). A negative, nonsignificant
association was also observed for LINE-1
methylation (β = –0.30, SE = 0.17, p = 0.07).
In multivariable regression analysis adjusting
for age, body mass index, smoking, and num-
ber of cigarettes, the average PM10 levels were
significantly and negatively associated with
both Alu (β = –0.19, SE = 0.09, p = 0.04)

 
 
 

 

 
 

 

 
 
 
 
 
 
 

 
h 

 
 
 
 
 

 
 
 

and LINE-1 (β = –0.34, SE = 0.17, p = 0.04) 
methylation. Scatter plots representing the 
association of average PM10 level with Alu and 
LINE-1 methylation are shown in Figure 1.

iNOS methylation showed no associa-
tion with average PM10 level in both non-
adjusted (β = –0.48, SE = 0.58, p = 0.41) and 
 multivariable analyses (β = –0.55, SE = 0.58, 
p = 0.34) (Table 4).

In addition, we also evaluated the associ-
ation of PM10 level with DNA methylation 
measured on blood DNA collected on the first 
day of the work week (Sample 2), as long-term 
effects of the exposure would likely be reflected 
also on samples collected after 2 days off work. 
The associations found between average PM10 
levels and DNA methylation measured at the 
beginning of the first week were in the same 
directions as those in the primary analysis 
reported in Table 4 both in the unadjusted (β 
= –0.18 SE = 0.12, p = 0.14 for Alu; β = –0.34, 
SE = 0.16, p = 0.04 for LINE-1; β = –0.66, SE 
= 0.60 p = 0.24 for iNOS) and multivariable 
analysis (β = –0.19, SE = 0.12, p = 0.11 for Alu; 
β = –0.39, SE = 0.15, p = 0.01 for LINE-1; β = 
–0.67, SE = 0.59, p = 0.25 for iNOS).

Discussion
In the present study of workers in an electric 
furnace steel plant with well-characterized 
measures of exposure to a wide range of PM10 

levels, global DNA methylation estimated 
in Alu and LINE-1 repeated elements were 
negatively associated with individual PM10 
exposure, without changes related to short-
term exposure during the week of the study. 
We observed short-term changes in iNOS 
promoter methylation, which decreased after 
3 consecutive days of work in the plant. 

Decreases in global DNA methylation 
content have been associated with widespread 
alterations in gene expression and chroma-
tin packaging control, as well as with higher 
genomic instability (Dean et al. 2005). The 
decrease we observed in our study in asso-
ciation with PM10 exposure may represent 
an initial step reproducing decreases in global 
DNA methylation content that are eventually 
observed in cardiovascular disease and cancer 
(Baccarelli et al. 2007; Robertson 2005). In 
our study, the association between PM10 level 
and decreased methylation in Alu and LINE-1 
was significant only when the two measure-
ments of methylation taken before and after 
3 consecutive work days, which showed no 
differences in Alu and LINE-1 methylation, 
were both included in repeated-measure mod-
els. In our analyses, the use in the same mod-
els of both methylation measures taken at the 
beginning and at the end of the work week 
was meant to evaluate long-term effects of 
PM10, which would have similar effects on 
measures of DNA methylation taken at the 
two different time points, and also provided 
our statistical analysis with added power to 
detect the PM10 effects. These results suggest 
that PM10 operated on genomic DNA meth-
ylation content over an extended time frame, 
possibly causing a persistent suppression of 
methylation levels that were not reset to base-
line over the 2 days off between consecutive 
work weeks. 

Air particle exposure has been shown to 
cause increased iNOS expression in animal 
models (Folkmann et al. 2007; Ulrich et al. 
2002). In our study, iNOS methylation, which 
has been previously shown to keep iNOS 
expression suppressed (Chan et al. 2005), was 
significantly decreased after 3 days of work, 
compared with measures taken before the 
first day of work of the same week. However, 
we did not find any association with levels of 
PM10 exposure; thus, whether iNOS promoter 
methylation is modified by short-term expo-
sure to PM remains uncertain. In vitro studies 
have shown that methylation of individual 
genes undergoes rapid changes in response 
to environmental factors (Bruniquel and 
Schwartz 2003; Takiguchi et al. 2003), and 
iNOS expression has been found to respond 
rapidly to different stimuli, including immu-
nostimulatory cytokines, bacterial products, 
or infection (Alderton et al. 2001). Increased 
iNOS expression has been found in disease 
conditions that have also been associated with 

Table 4. Association of PM10
from exposed workers.a

 Unadjusted regression Adjusted regressionb

 βc SE p-Value βc SE p-Value

Global methylation analysis 
 Alu –0.18 0.09 0.04 –0.19 0.09 0.04
 LINE-1 –0.30 0.17 0.07 –0.34 0.17 0.04
Gene-specific methylation analysis
 iNOS –0.48 0.58 0.41 –0.55 0.58 0.34
aTo estimate long-term effects of PM10, the level of individual exposure to PM10, taken as a measure of usual exposure to 
particles, was examined in relation to all the measures of DNA methylation performed in the study, regardless of whether 
they were measured on samples taken on the first day of work (i.e., after 2 days off) or after 3 consecutive days of expo-
sure to PM10 in the plant. In the models, the two samples collected at different times are exchangeable, thus assuming 
that PM10 effects operating over an extended time frame produced similar modifications at the two time points. bMulti-
variable mixed models adjusted for age, body mass index, smoking, number of cigarettes/day. cβ for an increment equal 
to the difference between the 90th and 10th percentile of PM10.
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Figure 1. Long-term effects of PM10 on blood DNA methylation in Alu (A) and LINE-1 (B) repeated ele-
ments. PM10 concentrations, taken as a measure of usual exposure to particles, was examined in rela-
tion to all the measures of DNA methylation performed in the study, regardless of whether they were 
measured on samples taken on the first day of work (i.e., after 2 days off) or after 3 consecutive days of 
exposure to PM10 in the plant. Abbreviations: adj, adjusted; nonadj, nonadjusted. Data points represent 
the average of DNA.
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PM exposure, such as cardiovascular disease 
and lung cancer (Comini et al. 1999; Liu et al. 
1998). Whether iNOS expression is increased 
after PM exposure due to iNOS promoter 
demethylation should be clarified in subjects 
exposed acutely to particles after an extended 
washout period, as well as in larger popula-
tions of exposed subjects. Future investigations 
should also aim at clarifying whether changes 
in iNOS promoter methylation modify its 
expression, as iNOS expression was not meas
ured in this study. 

Although several other genes might have 
been included in our study, we selected iNOS 
for DNA methylation analysis because the 
increase of expression after exposure to PM 
or PM components has been well substanti-
ated in previous studies conducted on sev-
eral tissues (Anazawa et al. 2004; Blackford 
et al. 1997; Castranova 2004; Folkmann et al. 
2007; Porter et al. 2006) including blood leu-
kocytes (Blackford et al. 1994), which were the 
source of DNA for our study. Further research 
is warranted to evaluate PM-related changes in 
DNA methylation of iNOS-related genes, as 
well as in other independent pathways.

Our study was based on quantitative analy-
sis of DNA methylation using pyrosequencing, 
which is highly reproducible and accurate at 
measuring small changes in DNA methylation 
(Bollati et al. 2007; Yang et al. 2004). DNA 
methylation analysis measured multiple indi-
vidual CpG dinucleotide positions for each 
marker and was repeated twice on each sample 

to minimize the assay variability. We used 
multilevel mixed models to fully represent the 
structure of the data and take advantage of the 
multiple measurements while also adjusting 
for potential confounders. Our data comprised 
each of the methylation markers investigated 
(Alu, LINE-1, and iNOS) of a matrix of six 
or four measures (3 × 2 or 2 × 2), including 
data from three (for Alu and LINE-1) or two 
(for iNOS) CpG dinucleotides and from two 
replicates. Commonly used statistical methods 
for the analysis of such data would include 
linear regression and analysis of variance, using 
as the outcome the mean computed from the 
multiple CpG dinucleotides and replicates 
from each sample. However, because the data 
in the methylation matrix obtained on an 
individual sample were not independent, the 
use of standard methods would not adequately 
represent the correlation existing within the 
matrix. We therefore elected to use multilevel 
mixed models that allowed us to fully utilize 
the information from all the measurements 
in our data and maximize statistical power by 
distinguishing between the different sources of 
variance in the data. 

We investigated a population with well-
characterized PM10 exposure that allowed for 
contrasting subjects over a wide range of dif-
ferent exposure levels. Our study was based 

on subjects working in several work areas of 
the same factory but did not include a differ-
ent population of subjects without a specific 
condition of exposure to PM. However, the 
lowest level of PM10 observed in our study 
(74 µg/m3) was relatively low, particularly 
if compared with the highest level found 
in our population (1,220 µg/m3), and only 
marginally higher than ambient PM10 levels 
measured in the geographic area in which 
the plant is located [average annual ambient 
PM10 levels between 41 and 57 µg/m3 were 
recorded in the year of the study by different 
ambient monitoring stations in the Brescia 
area (Anselmi and Patelli 2006)]. In addi-
tion, limiting our investigation to individuals 
who have all been working in the same work 
facility avoided potential concerns related to 
the selection of external referents who might 
have differed from the exposed population 
in terms of socioeconomic factors and other 
characteristics determining hiring into the 
plant (Pearce et al. 2007).

In addition to PM, workers in found-
ries may have additional exposures, includ-
ing heat, polycyclic aromatic hydrocarbons 
(Mirer 1998; Sorahan et al. 1994), carbon 
monoxide (Lewis et al. 1992; Park 2001), and 
non-ionizing radiations (Gomes et al. 2002). 
Although study subjects in our study were in 
a modern facility with state-of-the-art systems 
for exposure reduction, we cannot exclude 
that exposures other than PM might have 
contributed to the observed effects. 

Our results showed alterations in blood 
DNA methylation in a population of foundry 
workers, including changes in global methyla-
tion estimated in Alu and LINE-1 repetitive 
elements and gene-specific methylation of the 
iNOS promoter. Further studies are required to 
determine the role of such alterations in medi-
ating the effects of particles on human health.
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ERRATUM

Environmental Health Perspectives  •  ERRATUM 

NOTE: In Table 1 of the article by Tarantini et al. [Environ Health Perspect 117:217–222 (2009)], the sequence for the iNOS forward 
primer should be AATGAGAGTTGTTGGGAAGTGTTT instead of AATGAGAGTTGTTGTTGGGAAGTGTTT. 

The authors apologize for the error.

The corrected text is presented in the PDF version of this article.
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